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1. Introduction

One of the remarkable features of quantum mechanics is that it gives particles the ability

to tunnel to places that would not be allowed classically. By now the theory of tunneling is

well developed and has been used in many contexts, from the first applications in nuclear

decay [1, 2] using quantum mechanics, to creating a Universe from nothing [3] with quantum

field theory. Typically one finds that although a quantum particle can tunnel through a

barrier the transmission is exponentially damped, there are however circumstances where

the barrier is effectively transparent to particles of a particular energy. This is known as

resonant tunneling.

One way to understand resonant tunneling is to use an analogue from classical elec-

tromagnetism (see for example [4]). Just as quantum tunneling finds an electromagnetic

counterpart in frustrated total internal reflection, so resonant tunneling has a counterpart

in the Fabry-Pérot interferometer. The Fabry-Pérot device consists of two parallel, par-

tially silvered mirrors, such that incident light may either pass directly through the device

or suffer a number of reflections inside the cavity. If the width of the cavity is given by

a half-integer number of wavelengths, then the phase of a ray leaving the device does not

depend on the number of reflections inside the cavity and so will constructively interfere.

A rather direct comparison with quantum mechanics may be seen by studying the phe-

nomenon using path integrals [5]. From this perspective we consider the path integral of
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the classical paths through a double-barrier system (e.g. figure 2), where the path in the

classically forbidden region is replaced by classical paths using imaginary time. The quan-

tum phase of the particle is given by the action angle variable, so that if the central region

between the barriers is half a de Broglie wavelength then the multiple classical paths in the

path-integral will constructively interfere giving resonant tunneling. The first observation

of resonant tunneling was that of Chang et al. using semiconductors [6, 7].

It is worth stressing that the condition on the action angle variable for resonant tun-

neling (3.4) is precisely that required for a bound state to exist in the central region of

figure 2. Put another way, resonant tunneling relies on there being a bound state. One then

finds that particles whose energy matches that of the bound state may tunnel through the

barriers with probability close to unity. So, if we are to find resonant quantum tunneling

in field theory, a minimum requirement is that there is some bound state which the system

can use as a springboard to reach the true vacuum. The question then is what should

such a bound state look like? We shall argue that the natural choice for such a bound

state, at least in standard scalar quantum field theory,1 is the oscillon [8 – 14] a lump-like

configuration of the scalar field whose amplitude varies in time. We shall also argue that

the requisite oscillon that would facilitate tunnelling from the false vacuum does not exist.

The motivation for the present study comes from an observation of Tye [15] concerning

the myriad vacua in the string landscape. Tye argues that, owing to the huge number

of vacua, there is likely to be one direction which satisfies some criterion for resonant

tunneling, in which case we would find ourselves preferentially in a Universe at the end of a

chain of resonant tunneling events. Given that quantum mechanics can be recovered from

quantum field theory in the homogeneous limit, perhaps it is natural to expect resonant

tunneling to occur in field theory. However, one can immediately see the limitations of

imposing spatial homogeneity since this would not allow any kind of bubble nucleation!

The problem lies in the fact that the spatially homogeneous configurations represent a

measure zero subset of the full configuration space, even for finite spatial volume. It is more

appropriate to picture quantum field theory as infinite-dimensional quantum mechanics,

using the formalism of [16], but then we must take care when applying our intuition from

quantum mechanics.

We shall start in section 2 with a reminder of tunneling in quantum mechanics, using

the WKB aproximation. We extend this discussion in section 3 to cover resonant tunneling

in one dimension, and then N -dimensions in section 4. The formalism for N -dimensional

quantum mechanics is then generalized to field theory in section 5, and then we go on

to discuss resonant tunneling in quantum field theory and prove a no-go theorem. For

illustrative purposes, we present a thin wall analysis in section 7 before finishing with our

conclusions.

2. Tunneling in quantum mechanics

Let us begin with a review of tunneling in quantum mechanics (closely following [15,

17, 18]). Consider a particle of mass m moving in a one dimensional potential, V (q).

1By a “standard” scalar field, we mean one with a canonical kinetic term.
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Figure 1: A single potential barrier, II, separating two classically allowed regions, I and III, for a

particle of energy E.

Quantum mechanically, the particle is described by its wavefunction, ψ(q), satisfying the

time independent Schrodinger equation,

− ~
2

2m

d2ψ

dq2
+ V (q)ψ = Eψ. (2.1)

Provided that the WKB approximation is valid, the wavefunction (in the semi classical

limit) is given by

ψ(q) ∼= α+
√

k(q)
exp

[

i

~

∫ q

dq′k(q′)

]

+
α−

√

k(q)
exp

[

− i
~

∫ q

dq′k(q′)

]

, (2.2)

k(q) =
√

2m(E − V (q)), (2.3)

in the classically allowed region, E > V (q). We see that it is composed of a positive

momentum piece (α+) and a negative momentum piece (α−). In the classically forbidden

region, E < V (q), we have

ψ(q) ∼= β+
√

κ(q)
exp

[

1

~

∫ q

dq′κ(q′)

]

+
β−

√

κ(q)
exp

[

−1

~

∫ q

dq′κ(q′)

]

, (2.4)

κ(q) =
√

2m(V (q)− E), (2.5)

Now suppose we wish to tunnel between two classically allowed regions, I and III, separated

by a classically forbidden region, II, as shown in figure 1

By matching the general solution in the forbidden region, II, onto the adjacent regions,

I and III, it can be shown using the WKB connection formulae (appendix A) that the
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Figure 2: Two potential barriers, II and IV, separating three classically allowed regions, I, III and

V, for a particle of energy E.

transmission coefficient for a particle incident on the left of the barrier is given by

TI→III =

∣

∣

∣

∣

αIII
+

αI
+

∣

∣

∣

∣

2

= 4/Θ2, (2.6)

where

Θ = 2 exp

[

1

~

∫ q2

q1

dq′κ(q′)

]

. (2.7)

Note that q1 and q2 are the classical turning points. Typically, Θ≫ 1, so TI→III ≪ 1. The

probability of tunneling through the barrier, II, is therefore exponentially suppressed.2

3. Resonant tunneling in quantum mechanics

We will now demonstrate how resonant tunneling can occur in quantum mechanics. For

this we need three distinct classically allowed regions, separated by classically forbidden

regions as shown in figure 2. There are now four turning points given by q1, q2, q3 and q4.

For q ≫ q4, the wavefunction is given by the following

ψ(q) ∼=
αV

+
√

k(q)
exp

[

i

~

∫ q

q4

dq′ k(q′)

]

+
αV
−

√

k(q)
exp

[

− i
~

∫ q

q4

dq′ k(q′)

]

. (3.1)

2This is sometimes quoted as TI→III =

˛

˛

˛

˛

α
III
+

αI

+

˛

˛

˛

˛

2

= 4
`

Θ + 1

Θ

´

−2
[17, 19], however, as noted in appendix A,

the WKB approximation cannot consistently predict the 1/Θ term [18, 28].
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Again, using the WKB connection formulas, it can be shown that the tunneling amplitude

is given by

TI→V =

∣

∣

∣

∣

αV
+

αI
+

∣

∣

∣

∣

2

= 4/(ΘΦ cosW )2, (3.2)

where

W =
1

~

∫ q3

q2

dq′ k(q′), Φ = 2exp

[

1

~

∫ q4

q3

dq′κ(q′)

]

. (3.3)

The condition we require for resonant tunneling to occur is that

W = (n+ 1/2)π, n ∈ Z, (3.4)

in which case we see that the transmission rate diverges. Physically, of course, TI→V is

bounded to be less than unity and there is another term which becomes important that

the WKB analysis strictly cannot give. If we were to, illegally, use the connection formulae

without taking account of their directional nature one would find the oft-quoted result

TI→V =

∣

∣

∣

∣

αV
+

αI
+

∣

∣

∣

∣

2

= 4

[

(

ΘΦ +
1

ΘΦ

)2

cos2W + (Θ/Φ + Φ/Θ)2 sin2W

]−1

, (3.5)

showing how an extra term comes in as cos(W )→ 0.

To interpret (3.4) we note that this is precisely the WKB quantization condition, a

requirement for the existence of a bound state in the central, classically allowed region;

it is a statement that the allowed region is equal in width to a half-integer number of de

Broglie wavelengths. The picture we then have is that this bound state corresponds to a

particle which oscillates in the classically allowed region between turning points q2 and q3.

As it oscillates it picks up a quantum phase, and if that phase satisfies (3.4) then all such

paths in the path-integral will constructively interfere, leading to resonant tunneling.

There are two key points to take away from this semi-classical analysis:

• the existence of a classical solution which oscillates between the stationary points.

• the quantum phase which such an oscillating solution acquires is (n+ 1/2)π.

4. The WKB approximation in N -dimensional quantum mechanics

In order to investigate the possibility of resonant tunneling in quantum field theory, we

will need to develop the analogue of the WKB approximation. To do this we begin with

a study of quantum mechanics in N -dimensions [16] before extending our results to field

theory [20]. The leap from quantum mechanics in N dimensions to field theory is achieved

by carefully taking the limit as N →∞, as we will discuss later.

Consider the mechanics of a particle of unit mass in N -dimensions. The classical path

of the particle is given by ~q(t) = (q1(t), . . . , qN (t)), and is found by extremizing the action

S =

∫

dt

[

1

2
~̇q · ~̇q − V (~q)

]

, (4.1)
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Figure 3: A plot showing different classical paths for the path-integral, these interfere construc-

tively in resonant tunneling.

Quantum mechanically, a particle, of energy E is described by the wavefunction ψ(~q)

satisfying the time independent Schrodinger equation, Ĥψ = Eψ. To derive the precise

form of the Hamiltonian operator, Ĥ, we first need to derive the Hamiltonian for the

action (4.1). This is given by

H =
1

2
~p · ~p+ V (~q), (4.2)

where ~p = ~̇q is the conjugate momentum. By letting ~p→ −i~~∇, we promote the Hamilto-

nian (4.2) to an operator, H → Ĥ, and Schrodinger’s equation (in N dimensions) becomes

[

−~
2

2
~∇2 + V (~q)

]

ψ = Eψ. (4.3)

As in 1-dimensional quantum mechanics, let us recast the wavefunction as the exponential

of another function σ(~q), as follows

ψ(~q) = e−σ(~q)/~, σ(~q) = σ0(~q) + ~σ1(~q) +O(~2) (4.4)

Using this semi-classical approximation, Schrodinger’s equation gives

~∇σ0 · ~∇σ0 = 2(V − E), (4.5)

~∇σ0 · ~∇σ1 = ~∇2σ0/2. (4.6)

Clearly if σ(~q) is real, we must be in the classically forbidden region (E < V ). Let us assume

for the moment that this is indeed the case. In one dimension, equations (4.5) and (4.6)

have a straightforward solution. In more than one dimension this is no longer the case owing
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to the ambiguity in the direction of the gradient ~∇. This problem was resolved by Banks,

Bender and Wu by introducing the notion of the “most probable escape path” (MPEP) [16].

The basic idea is that the path integral is dominated by the contribution from a discrete

set of paths. As is well known, in the classically allowed region, these paths correspond to

the classical solutions. However, in the classically forbidden region, they correspond to the

MPEPs. By projecting the WKB equations (4.5) and (4.6) onto a MPEP, we are able to

reduce the dimensionality of the problem. This enables us to (approximately) solve for the

wavefunction close to a MPEP. Contributions to the wavefunction from fluctuations away

from the MPEPs are subdominant.

The formal definition of a MPEP is as follows. Consider a curve, ~Q(λ) ∈ R
N ,

parametrized by λ. The curve has tangent vector ~v‖(λ) = ∂ ~Q/∂λ, and N − 1 orthogo-

nal normal vectors ~v i
⊥(λ), i = 1, . . . , N − 1, satisfying

~v‖ · ~v i
⊥ = 0, ~v i

⊥ · ~v j
⊥ ∝ δij . (4.7)

The gradient operator on the curve, ~∇|~q= ~Q, can also be expanded as follows

~∇|~q= ~Q =
~v‖

|~v‖|2
(

~v‖ · ~∇
)

|~q= ~Q +

N−1
∑

i=1

~v i
⊥

|~v i
⊥|2

(

~v i
⊥ · ~∇

)

|~q= ~Q. (4.8)

Of course, everything we have said thus far would be true for any curve in R
N . What

singles out the MPEP is the condition

~v i
⊥ · ~∇σ|~q= ~Q = 0, i = 1, . . . , N − 1. (4.9)

We will see later that this path corresponds to a stationary solution to the Euclidean action,

and as such gives the dominant contribution to the path integral. In practice, what this

means is that the wave function is peaked along the MPEP. In order to solve equations (4.5)

and (4.6) along the MPEP, we reparametrize it as ~Q(λ(s)), where we have introduced, s,

the proper distance along the curve, satisfying

d

ds
=

~v‖

|~v‖|
· ~∇|~q= ~Q =⇒ ds = |d~Q| =

√

d~Q

dλ
· d
~Q

dλ
dλ = |~v‖|dλ. (4.10)

Making use of the condition (4.9), we easily obtain the following solution to (4.5) and (4.6)

on the MPEP:

σ0( ~Q) = ±
∫ s

ds

√

2
(

V ( ~Q)− E
)

, (4.11)

σ1( ~Q) =
1

4
ln

[

2(V ( ~Q)− E)
]

. (4.12)

Close to the MPEP, we can write

~q ≈ ~Q(λ) +
N−1
∑

i=1

ai(λ)~vi
⊥(λ) (4.13)

– 7 –
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where we expect the coefficients ai(λ) to satisfy |a| . O(~). Given the condition (4.9), this

enables us to extend the solutions (4.11) and (4.12) to a neighbourhood of the MPEP, by

simply sending ~Q→ ~q.

In the semi-classical approximation, the wavefunction in the forbidden region (E < V )

is dominated by its value close to the MPEP, where it is given by

ψ(~q) ∼= 1

[2(V (~q)− E)]
1

4

[

β+e
1

~

R

s ds
√

2(V (~q)−E) + β−e
− 1

~

R

s ds
√

2(V (~q)−E)
]

, (4.14)

The problem has now been reduced to one of finding the MPEP itself. To do this we

make use of its formal definition (4.9), which in practice says that to leading order, σ is

stationary in the direction normal to the path. Let us consider an arbitrary fluctuation,

δ ~Q normal to the path (δ ~Q · ~Q = 0). After a brief amount of algebra, it can be shown by

using (4.10) in (4.11) and then varying, that σ0(~Q + δ ~Q) vanishes to first order in δ ~Q, if

and only if

d2 ~Q

dλ2
− ~∇V = 0, (4.15)

where we have chosen λ such that

(

ds

dλ

)2

= 2(V − E). (4.16)

Note that (4.15) corresponds to the equation of motion derived from the Euclidean version

of (4.1), with λ playing the role of imaginary time.

When the particle enters the classically allowed region (E > V ), we repeat the above

analysis with the MPEP replaced by the classical path, ~Qcl(t), satisfying

d2 ~Qcl

dt2
+ ~∇V = 0 (4.17)

Here t plays the role of real time, and is related to the proper distance along the curve by

(

ds

dt

)2

= 2(E − V ) (4.18)

In the semi-classical approximation, the wavefunction close to the classical path is given

by

ψ(~q) ∼= 1

[2(E − V (~q))]
1

4

[

α+e
i

~

R

s ds
√

2(E−V (~q)) + α−e
− i

~

R

s ds
√

2(E−V (~q))
]

, (4.19)

5. The WKB approximation in quantum field theory

We will now generalise the results of the previous section to standard scalar quantum

field theory in 1 + 1 dimensions, closely following [20] (see also [21]). Such ideas are well

established and have been used successfully to derive tunneling rates in quantum field

theory [22]. One can easily generalize this to any number of dimensions. Consider the

– 8 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
6

standard theory of a scalar field, φ(t, x), evolving in time through a spatial volume, V,

under the infuence of a potential, V (φ). This is described by the action

S =

∫

dt

∫

V
dx

[

1

2
φ̇2 − 1

2
φ′2 − V (φ)

]

, (5.1)

where ˙= ∂/∂t, and ′ = ∂/∂x. We can think of the field φ(t, x) as describing a quantum

mechanical system in infinite-dimensional space, like so

{φ(t, x), x ∈ V} = {φ(t, x1), φ(t, x2), . . .}. (5.2)

Thinking of the field in this way makes it easy to extend the results of the previous section.

In particular, functions of the vector, ~x, will be replaced by functionals of the scalar field,

φ, and the scalar product will be replaced by an integral over space. To illustrate this

explicitly, consider the Hamiltonian derived from the action (5.1). This is given by

H =

∫

V
dx

[

1

2
π2 +

1

2
φ′2 + V (φ)

]

. (5.3)

where the conjugate momentum π = φ̇. Comparing the field theory Hamiltonian (5.3) with

the N -dimensional Hamitonian (4.2), we see that we should make the following generali-

sations:

1

2
~p · ~p →

∫

V
dx

1

2
π2, (5.4)

V (~q) → U [φ] =

∫

V
dx

[

1

2
φ′2 + V (φ)

]

, (5.5)

where we have introduced the generalised potential, U [φ] [20]. It is the form of this po-

tential, rather than V (φ), that determines the tunneling of the system. For this reason it

is difficult to apply one’s intuition from the quantum mechanics potential V (~q) (which is

the naive analogue of V (φ)) to the field theory situation. To see this explicitly, suppose we

take the simple potential3

V (φ) = λφ4. (5.6)

and consider the case of a field theory in a finite box of size L, such that φ vanishes at the

boundary. By making the Fourier decomposition,

φ(t, x) =

∞
∑

n=1

qn(t) sin(2πnx/L). (5.7)

we are able to calculate the generalised potential (5.5),

U [φ] ≡ U({qn}) =
λ

32

∑

nmp

qnqmqp[qn−m+p + q−n+m+n − q−n+m−p − qn−m−p − qn+m+p

−q−n−m+p + q−n−m−p + qn+m−p] +
∑

n

π2

L
n2q2n. (5.8)

3This is not a tunneling potential, we just use it to make our point.
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The generalised potential in (5.8) bears very little resemblance to the field theory poten-

tial (5.6). This clearly demonstrates why one should proceed with extreme care applying

quantum mechanical intuition to a field theory setting. It is the generalised potential, U [φ],

that is relevant in tunneling situations, and the one “seen” by the MPEP. Even if the field

theory potential (5.6) looks similar to figure 2, we have no reason to expect that the system

will support resonant tunneling.

To derive the field theory analogue of the Hamiltonian operator we let π → −i~ δ
δφ(x) ,

and obtain the generalised Schrodinger equation
[

−~
2

2

∫

V
dx

δ2

δφ(x)2
+ U [φ]

]

ψ[φ] = Eψ[φ] (5.9)

The wavefunction, ψ is a functional acting on an appropriately chosen “configuration

space”. Whereas in N -dimensional quantum mechanics, the “configuration space” was

simply R
N , here it is the space of real valued functions on V, satisfying some boundary

condition on ∂V. The norm, |ψ[φ]|2, therefore measures the probability density for a given

configuration φ.

As before, we make a semi-classical approximation

ψ[φ] = e−σ[φ]/~, σ[φ] = σ0[φ] + ~σ1[φ] +O(~2), (5.10)

and derive the field theory version of the WKB equations

∫

V
dx

(

δσ0[φ]

δφ(x)

)2

= 2(U [φ] − E), (5.11)

∫

V
dx

δσ0[φ]

δφ(x)

δσ1[φ]

δφ(x)
=

1

2

∫

V
dx

δ2σ0[φ]

δφ(x)2
. (5.12)

The forbidden region now corresponds to E < U . In this region we need the analogue of the

MPEP. This should be the path in configuration space that dominates the path integral.

We therefore take the MPEP to be a curve Φ(λ, x) in this space, parametrized by λ. At

each point x ∈ V, the curve has tangent vector, v‖(λ, x) = ∂Φ/∂λ, and a continuous set of

orthogonal normal vectors, v⊥(λ, x; y), satisfying
∫

V
dx v‖(λ, x)v⊥(λ, x; y) = 0,

∫

V
dx v⊥(λ, x; y)v⊥(λ, x; y′) ∝ δ(y − y′). (5.13)

As before, the gradient on this curve can be expanded as follows

δ

δφ(x)

∣

∣

∣

∣

φ=Φ

=
v‖(λ, x)

∫

V dx
′v‖(λ, x′)2

∫

V
dx′ v‖(λ, x

′)
δ

δφ(x′)

∣

∣

∣

∣

φ=Φ

+

∫

dy

[

v⊥(λ, x; y)
∫

V dx
′v⊥(λ, x′; y)2

∫

V
dx′ v⊥(λ, x′; y)

δ

δφ(x′)

∣

∣

∣

∣

φ=Φ

]

. (5.14)

The MPEP is chosen so that the wavefunction is stationary relative to fluctuations normal

to the path, i.e.,
∫

V
dx′ v⊥(λ, x′; y)

δσ[φ]

δφ(x′)

∣

∣

∣

∣

φ=Φ

= 0, ∀y. (5.15)
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In direct analogy with the previous section, this condition ensures that the path corresponds

to the stationary solution to the Euclidean action, and as such dominates in the path

integral. As before, the WKB equations (5.11) and (5.12) can be solved along the MPEP

to give,

σ0[Φ] =

∫ s

ds
√

2 (U [Φ]− E), (5.16)

σ1[Φ] =
1

4
ln [2(U [Φ]− E)] , (5.17)

where we have introduced, s, the proper distance along the path, defined as:

d

ds
=

∫

V dx v‖(λ, x)
δ

δφ(x)

∣

∣

∣

φ=Φ
[∫

V dx v‖(λ, x)
2
]

1

2

=⇒ ds =

[

∫

V
dx

(

dΦ

dλ

)2
]

1

2

dλ. (5.18)

Close to the MPEP, we can write

φ(x) ≈ Φ(λ, x) +

∫

dy a(λ; y)v⊥(λ, x; y). (5.19)

where |a| . O(~). Given the condition (5.15), we can now extend the solutions (5.16)

and (5.17) to a neighbourhood of the MPEP, by sending Φ → φ. In the semi-classical

approximation, the wavefunction in the forbidden region (E < U) is dominated by its

value close to the MPEP, where it is given by

ψ[φ] ∼= 1

[2(U [φ] − E)]
1

4

[

β+e
1

~

R

s ds
√

2(U [φ]−E) + β−e
− 1

~

R

s ds
√

2(U [φ]−E)
]

, (5.20)

Again, the problem has been reduced to finding the MPEP itself. In close analogy with

the previous section, it can be shown that if λ is chosen so that

(

ds

dλ

)2

= 2(U [Φ]− E), (5.21)

then the MPEP satisfies
d2Φ

dλ2
+
d2Φ

dx2
− V ′(Φ) = 0. (5.22)

Of course, equation (5.22) corresponds to the equations of motion derived from the Eu-

clidean version of (5.1), with λ playing the role of imaginary time.

In the classically allowed region (E > U), the MPEP is replaced by the classical path,

Φcl(t, x), satisfying

d2Φcl

dt2
− d2Φcl

dx2
+ V ′(Φcl) = 0, (5.23)

where t plays the role of real time, and is related to the proper distance along the curve by

(

ds

dt

)2

= 2(E − U [Φcl]). (5.24)
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In the semi-classical approximation, the wavefunction close to the classical path is given

by

ψ[φ] ∼= 1

[2(E − U [φ])]
1

4

[

α+e
i

~

R

s ds
√

2(E−U [φ]) + α−e
− i

~

R

s ds
√

2(E−U [φ])
]

. (5.25)

We have now shown that the WKB approximation, which is so successful in quantum me-

chanics, has a direct analogue in quantum field theory. In the classically allowed region,

the wavefunction is expressed in terms of left and right moving “wavepackets”. Vacuum

decay corresponds to a left mover penetrating the barrier, and the decay rate is simply pro-

portional to the transmission coefficient. To understand why this is so, consider Gamow’s

description of α decay [1, 2, 23]. The decay rate is determined by the frequency at which

the particle hits the barrier, and the transmission probability, T , through the barrier. The

latter gives the dominant contribution, with the frequency only contributing through a

subdominant prefactor [1, 2, 22, 23].

We are now able to apply this formalism to investigate the possibility of resonant

tunneling in field theory. Comparing the field theory wavefunctions (5.20) and (5.25) with

their quantum mechanical counterparts in section 2, there seems little reason to expect

that resonant tunneling cannot occur for a suitably chosen generalised potential, U [φ].

However, in the next section we will show that another crucial ingredient is always missing

in field theory: the existence of a suitable “bound state”.

6. Resonant tunneling in field theory: a no go theorem

In the previous section, we showed how quantum field theory could be reduced, in the semi

classical limit, to quantum mechanics along a preferred path in configuration space. The

“preferred paths” correspond to most probable escape paths (MPEPs) in the classically

forbidden regions, and classical paths in the classically allowed regions. Along a MPEP, the

wavefunction is given by equation (5.20), and along the classical path by equation (5.25).

In order to develop a field theory analogue of resonant tunneling as descibed in section 2,

we need to be able to match the two solutions onto one another. Whenever a MPEP can

be smoothly joined onto a classical path (or vice-versa) at a classical turning point, then

it is clear that the matching conditions will mirror those in quantum mechanics (see [17]).

Note that we are forced to join paths at a classical turning point in order to guarantee

vanishing momenta at that point. This is the only way we can have continuity, since the

momentum is real along the classical path, and imaginary along the MPEP [24].

We are now in a position to ask the following: (i) what is required for resonant tunneling

to occur in field theory, and (ii) is this even possible? Let us address the first question.

Consider the dynamics of a scalar field described by the action (5.1). A generic potential,

V (φ), is shown in figure 4 with a local minimum at φ = 0, corresponding to the false

vacuum, and a global minimum at φ = φ1, corresponding to the true vacuum.4

4Without loss of generality, we have chosen the false vacuum to the lie at a point where the potential

vanishes. In principle there may be any number of local minima between φ = 0, and φ = φ1, although this

is not shown in the figure.

– 12 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
6

φ1

V(φ)

φ

Figure 4: A generic potential, V (φ) with at least two minima, at φ = 0 and φ = φ1, satisfying

V (φ1) < V (0) = 0.

Now consider a tunneling process from false vacuum to true, through the nucleation

of a bubble of true vacuum. We can think of the false vacuum as a classical path φ =

Φ0
cl(t, x) ≡ 0. The expanding bubble is also a classical path φ = Φ1

cl(t, x), satisfying the

same boundary conditions, i.e.,

Φ|∂V =
∂Φ

∂x

∣

∣

∣

∣

∂V

= 0, (6.1)

where ∂V refers to the spatial boundary which is usually taken to be at spatial infinity.

To have any hope of tunneling between the two classical paths, they must have the same

conserved energy.

E =

∫

V
dx

[

1

2

(

∂Φ

∂t

)2

+
1

2

(

∂Φ

∂x

)2

+ V (Φ)

]

(6.2)

The energy of the false vacuum is, of course, zero. This is also true of the expanding

bubble: the negative energy stored in the interior of the bubble being compensated for

by the positive energy in the bubble wall [22]. In a standard tunneling scenario, these

classical paths are connected by a MPEP. The wavefunction ψ[φ] is damped exponentially

as it follows the MPEP through the forbidden region, and so the probability of tunneling

is suppressed. For resonant tunneling, analogous to that described in section 2, we require

the existence of another classical path, Φ∗
cl(t, x). This must correspond to some sort of

“bound state”, and be connected to the false vacuum by one MPEP, and to the expanding

bubble by another. We should emphasise that resonant tunneling from false vacuum to

true is direct. It is not as if we first tunnel to the bound state, stay there for a bit, and

then tunnel through to the true vacuum. Of course, one could certainly imagine such a
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scenario, but this would simply correspond to two standard tunneling events, and would

have nothing to do with resonant tunneling.

To understand what we need for a bound state we should reconsider what happens

in quantum mechanics. In the classically allowed region of figure 2, there are classical

paths oscillating between the turning points. These classical oscillating solutions qualify

as bound states if they satisfy the WKB quantization condition (3.4). Provided such a

bound state exists, resonant tunneling can occur if the incoming particle has the same

energy as the bound state.

In field theory we should therefore look for a classical, oscillatory solution which would

play the role of the bound state and act as the intermediary between the false and true

vacuum. Moreover, this oscillatory solution must satisfy the field theory analogue of (3.4),

i.e.,
1

~

∫ s2

s1

ds
√

2(E − U [Φ∗
cl]) = (n+ 1/2)π, n ∈ Z (6.3)

where s is the proper distance along the curve, and s1 and s2 correspond to the classical

turning points. Actually, it is convenient to replace the proper distance with real time,

using equation (5.24). Then (6.3) is replaced by

1

~

∫ t2

t1

dt 2(E − U [Φ∗
cl]) = (n + 1/2)π, n ∈ Z (6.4)

where t1 < t2 are the classical turning points in real time. Note that in addition, the

momentum, ∂Φ/∂t, must vanish at these points, in order that we can continuously match

the imaginary momentum along the MPEP to the real momentum along the classical path.

The existence of two turning points enables us to connect the classical path to a MPEP at

one end (t = t1), and to another MPEP, at the other (t = t2). Crucially, this means that

the classical solution, Φ∗
cl(t, x) must be stationary at all points in space, on at least two

separate occasions, t1 and t2.

All this considered, it is clear that for resonant tunneling to occur, the “bound state”

Φ∗
cl(t, x) must satisfy each of the following conditions:

1. it is a solution to the classical field equations (5.23), other than the false vacuum.

2. it has zero energy

3. it satisfies the boundary conditions (6.1)

4. there exists t1, t2 ∈ R, where t1 < t2, such that
∂Φ∗

cl

∂t

∣

∣

∣

(t1,x)
=

∂Φ∗

cl

∂t

∣

∣

∣

(t2,x)
= 0, ∀x ∈ V.

5. it satisfies the “bound state” condition (6.4)

At first glance, it does not seem unreasonable that such a bound state could, in principle,

exist. Oscillons, [8 – 14] for example, seem to satisfy most of the conditions: they are solu-

tions to the field equations; they asymptote to the false vacuum; and they are everywhere

stationary at certain times. However, it is not at all obvious that an oscillon will exist

that has zero energy, or even that it satisfies the bound state condition. There is a nice
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model with a logarithmic potential [8, 11] for which the tunneling solution is known ana-

lytically [25], moreover, the oscillon solutions are also simple to find (up to quadrature). In

this case one finds that there are no zero energy oscillons. Of course, this does not prove

that such objects cannot exist, but it does help in our understanding of the problem. In

fact, we will now prove that there is no solution, oscillon or otherwise, that satisfies all five

conditions.

Let us begin by assuming that a solution, satisfying all five conditions, does in fact

exist. Again, we work explicitly in 1+1 dimensions but the proof generalizes quite simply

to higher dimensions. One can easily check, that because of first and fourth conditions,

the integral,

I =

∫ t2

t1

dt

[

V (Φ∗
cl)−

1

2

(

∂Φ∗
cl

∂t

)2

− 1

2

(

∂Φ∗
cl

∂x

)2
]

, (6.5)

is constant everywhere in space. We therefore evaluate it on the boundary, ∂V, and use

the third condition to show that I = 0, and therefore

∫ t2

t1

dt

[

1

2

(

∂Φ∗
cl

∂t

)2

+
1

2

(

∂Φ∗
cl

∂x

)2
]

=

∫ t2

t1

dt V (Φ∗
cl). (6.6)

Now by the second condition, the solution has zero energy, from which it follows that

∫ t2

t1

dt

∫

V
dx

[

1

2

(

∂Φ∗
cl

∂t

)2

+
1

2

(

∂Φ∗
cl

∂x

)2

+ V (Φ∗
cl)

]

= 0. (6.7)

Reversing the order of integration, and making use of equation (6.6), it is easy to show

that
∫

V

∫ t2

t1

dt

[

(

∂Φ∗
cl

∂t

)2

+

(

∂Φ∗
cl

∂x

)2
]

= 0. (6.8)

It now follows that Φ∗
cl ≡ 0, in other words, the required path has to be the false vacuum!

But this cannot be, since it violates the first condition. Note that we have only used the

first four conditions in arriving at this contradiction; the fifth, and final, condition was not

required. This is simply an outcome of the fact that we have shown there is no classical path

that has the required oscillatory property, so there is nothing for the WKB quantization

condition to pick from. We conclude, therefore that there is no solution that can satisfy

all five conditions.

What does this mean practically? It means that, using the standard techniques in-

troduced many years ago by Banks, Bender and Wu [16], there is no direct analogue in

standard scalar quantum field theory, of resonant tunneling in quantum mechanics. This

may come as a surprise given that we were able to reduce the field theory problem to quan-

tum mechanics using MPEPs and classical paths. However it was precisely the absence of

a suitably oscillating classical path, or “bound state”, that meant there simply were not

enough ingredients available in field theory for an analogous resonance to occur. Tye has

recently argued that a direct analogue of resonant tunneling in quantum mechanics may be

relevant in the string landscape [15]. Although we did not include gravity in our analysis,

our results clearly cast doubts on the validity of this claim.
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R

V(R)

Figure 5: The potential for the position of the bubble wall, in the thin wall limit.

7. Example: bubble nucleation in the thin wall limit

In order to illustrate our result explicitly, let us consider the nucleation of a bubble of true

vacuum, in the thin wall limit. As is well known [22], we can treat the bubble walls as

membranes with an action given by

Sm = −σ
∫

d3ξ
√

detG+ ǫ

∫

dV dt. (7.1)

where G is the induced metric on the world volume of the membrane, σ the tension of the

bubble wall, V the volume of the bubble and ǫ the difference in potential energy density

between the inside and outside of the bubble.

If we impose spherical symmetry then the action of a single bubble wall leads to a

Lagrangian for the radius of the bubble given by

L = −4πσR2
√

1− Ṙ2 +
4πǫ

3
R3. (7.2)

We can convert this to a Hamiltonian,

H =
√

P 2
R + (4πσ)2R4 − 4πǫ

3
R3, (7.3)

= P 2
R/(8πσR

2) + . . .+ 4πσR2 − 4πǫ

3
R3,

where the . . . signifies higher powers of the conjugate momentum, PR. The important point

to note is that the potential term of (7.3) takes the form indicated in figure 5. Using this

figure we can understand the nucleation of a single bubble as a quantum particle being
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described by (7.3) which tunnels from R = 0 through the barrier, and then continues to roll

down the potential, corresponding to the bubble expanding. To get resonant tunneling we

need a “bound state”: a classical solution which is stationary on two separate occasions.

In this thin wall set up, this would correspond to the bubble wall oscillating back and forth

between two radii. It is easy to see that the potential does not have any region which could

lead to such a bound state. Adding another bubble does not change this since in the thin

wall limit the walls move independently of one another.

8. Discussion

Resonant tunneling through a double potential barrier is a well understood phenomenon in

Quantum Mechanics, and can be described through the careful use of WKB techniques. For

this resonance to occur, we require a number of key ingredients. The first is the existence of

a classical bound state in the central classically allowed region. This is a classical solution

that oscillates between the classical turning points, with a quantum phase of (n+1/2)π. If

the energy of a wave incident on the barrier exactly matches the bound state energy, the

wave will tunnel through the double barrier with almost unit probability. This effect has

been seen to occur in experiments involving semiconductors [6, 7].

Given that a limit of quantum field theory is quantum mechanics, it is natural to

expect that we should also be able to recover the resonance phenomena in the context of

field theory. This would have a number of important consequences for cosmology, one of

which was discussed in the recent work of Tye [15]. The cosmic landscape is made up

of a huge number of vacua, which would mean there could be a direction which satisfies

the criteria of resonant tunneling. If this were the case it would be possible to argue that

we have found ourselves in a Universe with such a small vacuum energy today because of

resonant tunneling. However, in this paper, we have argued that there is no direct analogue

of quantum mechanical resonant tunneling in standard scalar QFT, at least if the tunneling

has to satisfy a series of well motivated conditions.

The precise way to bridge the gap between quantum field theory and quantum mechan-

ics is to picture quantum field theory as infinite-dimensional quantum mechanics following

the pioneering work of Banks, Bender and Wu [16]. We use their notion of the “most

probably escape path” (MPEP), the class of paths which dominate the path integral in the

classically forbidden region. In particular quantum field theory can be reduced in the semi

classical limit to quantum mechanics along a preferred path in configuration space (the

MPEP in the classically forbidden regions and the classical path in the classically allowed

regions). Tunneling effects are controlled by a generalised potential (5.5), which may well

bear very little resemblance to the original field theory potential, V . From this point we are

able to address the issue of resonant tunneling in field theory. Given the fact that we have

essentially reduced the problem to a quantum mechanical one, we might naively expect

resonant tunneling to be possible for a suitably chosen generalised potential. However,

recall that for resonance to occur, we also require the existence of an oscillating solution to

the classical field equations satisfying a WKB quantization condition (6.4). If it exists, this

solution would provide the spring board for the field to tunnel between the false and true
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vacuum, with nearly unit probability. No such solution, satisfying appropriate boundary

conditions, exists. The absence of a suitable oscillating solution may come as a surprise

when one considers the fact that after bubble nucleation the field inside the bubble oscil-

lates around the local minimum of the potential. However, the surfaces upon which ∂tφ

vanishes are hyperbolae,5 as opposed to surfaces of constant t, as required by our fourth

condition. This condition is crucial because it enables us to match the two MPEPs to the

bound state, generating the complete resonant tunneling path.

Since we never actually specify the relevant spatial volume, V, it is easy to see that

our theorem can be applied over any finite region. In particular, imagine a situation where

there are three vacua, φfalse, φmiddle and φtrue, with V (φfalse) > V (φmiddle) > V (φtrue),

and assume that a bubble of φmiddle has nucleated inside a region of φfalse. Of course, the

probability of nucleation is exponentially suppressed, but once it has nucleated, we can

ask whether or not resonant tunneling can happen locally within the bubble’s interior. To

see that it cannot, simply choose V to be contained entirely within the bubble, and define

φmiddle to be our new false vacuum, and then reapply our theorem. Of course, standard

Coleman tunneling [22] could certainly occur inside the bubble via the nucleation of a

second bubble of φtrue, but this process is exponentially suppressed and has nothing to

do with resonant tunneling. Although our theorem rules out resonant tunneling, it does

not apply to standard Coleman tunneling, since this does not require the existence of the

intermediate bound state.

At the end of the day, does this mean resonant tunneling can never occur in quantum

field theory? Certainly we have said nothing about non-standard scalar field theories, or

indeed gauge fields. However, at least for standard scalar QFT, for resonance to occur, we

believe one would need to go beyond the WKB approximation (but that is beyond the scope

of this paper), or else find a satisfactory way of evading our no-go theorem. We might be

able to achieve this by altering the boundary conditions in our analysis. In [27], tunneling

processes with nonvanishing momenta at the transition points were considered. Vanishing

momenta is usually required for continuity, but one may consider relaxing it here to see

whether it alters our result. Another alternative would be to change the spatial boundary

conditions at ∂V. eg by allowing for a path which has φ = φ0 6= 0 everywhere in V, where

also V (φ0) = 0. Tunneling processes in which the entire space tunnels at once certainly

exist in gravitating field theories [29], but this was not included in our analysis. One may

also consider tunneling in situations where the spatial sections are compact, then the results

of simulations using the Hartree approximation [30] suggest that resonant tunneling can

occur. Of course, there may well be other efficient tunneling mechanisms in field theory

that bear no resemblance whatsoever to resonant tunneling in quantum mechanics, such

as DBI tunneling [32]. Another example was recently discussed by Gleiser et al. [31].

By switching on a finite temperature, they generated an initial state containing a finite

density of oscillons, which collide to form critical bubbles of true vacuum. This “resonant

nucleation” of critical bubbles is qualitatively very different to the resonant tunneling

phenomenon we have discussed in this paper, but may be relevant in the early universe.

5The existence of these hyperbolae allows us to interpret the bubble’s interior as an open universe [26].
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q=a

V(q)

V=E

q=b

V(q)

V=E

Figure 6: Connecting the wavefunction when the potential increases (a) to the right of the turning

point, or (b) to the left of the turning point.

Note added. Whilst this paper was in the final stages of completion, another paper [32]

appeared, which contains significant overlap with section 5.

Acknowledgments

We thank Laurence Eaves for explaining the solid-state version of tunneling. We would

also like to thank Henry Tye, Gary Shiu and Saswat Sarangi for interesting discussions.

PMS is supported by STFC.

A. WKB connection formulae

One has to be careful when using the WKB approximation to connect the wavefunction

on either side of a classical turning point.The reason being that in the classically forbidden

region the solutions are either exponentially growing or decaying, and in the presence of

a growing solution the WKB approximation is unable to track the decaying solution. In

practise what this means is that the connection formulae depend on which direction you

apply them.

For example if we start in the classically allowed region with the oscillating wave-

function then we must match this to the exponentially growing solution, as the decaying

solution will eventually be swamped by any amount of the growing solution. The corrollary

of this is that if we are given the growing solution and try to attach the oscillating solution

then we run into difficulties because the decaying solution which the approximation misses

effects the phase in the oscillating region.

– 19 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
6

One finds that when the potential increases to the right of the turning point as in

figure 6(a) we connect according to [28]

2
√

k(q)
cos

[

1

~

∫ a

q
k(q′)dq′ − π/4

]

← 1

κ(q)
exp

[

−1

~

∫ q

a
κ(q′)dq′

]

, (A.1)

1
√

k(q)
cos

[

1

~

∫ a

q
k(q′)dq′ + α

]

→ 1

κ(q)
exp

[

1

~

∫ q

a
κ(q′)dq′

]

. (A.2)

The notation means that we follow the arrow from the known solution to give us the

matched solution on the other side of the turning point. For example, (A.1) tells us that

if we know the solution is exponentially decaying to the right in figure 6(a) then on the

left we find the oscillating wavefunction of (A.1). Similarly, if we know the oscillatory

wavefunction to the left of figure 6(a) then for a genenric phase α 6= −π/4 we will get the

growing mode given in (A.2), which would swamp any decaying mode.

If we have a turning point where the potential increases to the left then onefinds the

following connection formulae,

1

κ(q)
exp

[

−1

~

∫ b

q
κ(q′)dq′

]

→ 2
√

k(q)
cos

[

1

~

∫ q

b
k(q′)dq′ − π/4

]

, (A.3)

1

κ(q)
exp

[

1

~

∫ b

q
κ(q′)dq′

]

← 1
√

k(q)
cos

[

1

~

∫ q

b
k(q′)dq′ + α

]

. (A.4)
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